Lectures on Randomized Numerical Linear Algebra
نویسندگان
چکیده
2 Linear Algebra 3 2.1 Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Vector norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Induced matrix norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.5 The Frobenius norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.6 The Singular Value Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.7 SVD and Fundamental Matrix Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.8 Matrix Schatten norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.9 The Moore-Penrose pseudoinverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.10 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
منابع مشابه
Lecture Notes on Randomized Linear Algebra
These are lecture notes that are based on the lectures from a class I taught on the topic of Randomized Linear Algebra (RLA) at UC Berkeley during the Fall 2013 semester. These notes are unchanged, relative to the notes that have been available on my web page since then; but, in response to a number of requests, I decided to put them all together as a single file and post them on the arXiv. In ...
متن کاملInteractive Learning and Teaching of Linear Algebra by Web Technologies: Some Examples
Supposing that students have successfully passed lectures and assessments in linear algebra in traditional way, it is suggested to introduce block-teaching by adequate software tools. These tools would, in 2D and 3D, enable students to establish and to confirm their knowledge by use of numerical, symbolical and visual representations of previously accepted concepts. At the same time they would ...
متن کاملFast Randomized Iteration: Diffusion Monte Carlo through the Lens of Numerical Linear Algebra
We review the basic outline of the highly successful diffusion Monte Carlo technique commonly used in contexts ranging from electronic structure calculations to rare event simulation and data assimilation, and propose a new class of randomized iterative algorithms based on similar principles to address a variety of common tasks in numerical linear algebra. From the point of view of numerical li...
متن کاملRandomized Algorithms for Matrices and Data Lecture 1 - 09 / 04 / 2013 Lecture 1 : Introduction and Overview
This course will cover recent developments in randomized matrix algorithms of interest in large-scale machine learning and statistical data analysis applications. By this, we will mean basic algorithms for fundamental matrix problems—such as matrix multiplication, least-squares regression, lowrank matrix approximation, and so on—that use randomization in some nontrivial way. This area goes by t...
متن کاملOn the Numerical Radius and Its Applications*
We give a brief account of the numerical radius of a linear bounded operator on a Hilbert space and some of its better-known properties. Both finiteand infinitedimensional aspects are discussed, as well as applications to stability theory of finite-difference approximations for hyperbolic initial-value problems. 1. DEFINITION, BOUNDS, AND EVALUATION Let H be a Hilbert space over the complex fie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.08880 شماره
صفحات -
تاریخ انتشار 2017